Getting Started with PySpark: Difference between revisions

No edit summary
No edit summary
Line 44: Line 44:


def getErrorType ( errorString ):
def getErrorType ( errorString ):
     return errorString.upper()
     if errorString is None:
     map = { 'zip': ['ZIP'], 'moved': ['MOVED'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS']  }     
        return 'empty'
   
     map = { 'moved': ['MOVED'], 'zip': ['ZIP'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS']  }     
     for key,searchlist in map.items():
     for key,searchlist in map.items():
         for searchterm in searchlist:
         for searchterm in searchlist:
             if ( errorString.find(searchterm) ):
            print ("{} - {}".format(errorString, searchterm) )
                 return key
             if ( errorString.find(searchterm) >= 0 ):
                 return key  
    return 'unknown'
 
myudf = udf(getErrorType, StringType())
      
      
    return 'unknown'       
subsetDF = ( cleanDF              
 
def dummy_function(data_str):
    cleaned_str = 'dummyData'
    return cleaned_str
 
myudf = udf ( getErrorType, StringType() )
 
subsetDF = ( cleanDF
                .limit(10)
                 .select("COMMENT_DESC")
                 .select("COMMENT_DESC")
                 .withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) )  
                 .withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) )  
           )
           )


print(subsetDF.count())
print(subsetDF.count())
subsetDF.show()</pre>
subsetDF.show()
 
country_totals = ( subsetDF
                  .select ( "ERROR_CLASSIFICATION")
                  .groupby("ERROR_CLASSIFICATION")
                  .agg(count("*").alias("count"))
                  .sort(col("count").desc())
)
country_totals.show()</pre>

Revision as of 23:27, 30 October 2019

from pyspark.sql import SparkSession

spark = SparkSession \
    .builder \
    .appName("Python Spark SQL basic example") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()

import pyspark.sql.functions as F

Load some data

df = spark.read.load("DEX03s - 2019-10-07.csv",
                     format="csv", sep=",", inferSchema="true", header="true")

Find columns that are more than 90% null

threshold = df.count() * .90
null_counts = df.select([F.count(F.when(F.col(c).isNull(), c)).alias(c) for c in df.columns]).collect()[0].asDict()
to_drop = [k for k, v in null_counts.items() if v >= threshold ]

Drop Null columns

clean = df.drop(*to_drop)
display(clean)

Create a subset of records

subsetDF = cleanDF.limit(100).select("COMMENT_DESC")
map = { 'zip': ['ZIP'], 'moved': ['MOVED'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS']  }

print(subsetDF.count())
subsetDF.show()

This isn't working, but the intent is to map a new column based on a custom UDF function. I think it's maybe failing because functions are not allowed inside a UDF.

from pyspark.sql.functions import count, col
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType


def getErrorType ( errorString ):
    if errorString is None:
        return 'empty'
    
    map = { 'moved': ['MOVED'], 'zip': ['ZIP'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS']  }    
    for key,searchlist in map.items():
        for searchterm in searchlist:
            print ("{} - {}".format(errorString, searchterm) )
            if ( errorString.find(searchterm) >= 0 ):
                return key    
    return 'unknown'

myudf = udf(getErrorType, StringType())
    
subsetDF = ( cleanDF                
                .select("COMMENT_DESC")
                .withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) ) 
           )



print(subsetDF.count())
subsetDF.show()

country_totals = ( subsetDF
                  .select ( "ERROR_CLASSIFICATION")
                  .groupby("ERROR_CLASSIFICATION")
                  .agg(count("*").alias("count"))
                  .sort(col("count").desc())
)
country_totals.show()