Getting Started with PySpark: Difference between revisions
Line 157: | Line 157: | ||
.agg(count('excp_type_cd').alias('cnt'),F.first('evnt_crt_tmstp').alias('first'),F.last('evnt_crt_tmstp').alias('last')) | .agg(count('excp_type_cd').alias('cnt'),F.first('evnt_crt_tmstp').alias('first'),F.last('evnt_crt_tmstp').alias('last')) | ||
)</pre> | )</pre> | ||
== Date Functions == | |||
=== Convert Time w/ Time Offset to Timestamp === | |||
<pre> | |||
from dateutil import parser, tz | |||
from pyspark.sql.types import StringType | |||
from pyspark.sql.functions import col, udf | |||
# Create UTC timezone | |||
utc_zone = tz.gettz('UTC') | |||
# Create UDF function that apply on the column | |||
# It takes the String, parse it to a timestamp, convert to UTC, then convert to String again | |||
func = udf(lambda x: parser.parse(x).astimezone(utc_zone).isoformat(), StringType()) | |||
myDf = ( scanDf | |||
.withColumn('event_timestamp', func(col("evnt_crt_tmstp")) ) | |||
.select("evnt_crt_tmstp", "event_timestamp") | |||
) | |||
display ( myDf.limit(5).toPandas() )</pre> |
Revision as of 18:21, 6 January 2020
from pyspark.sql import SparkSession spark = SparkSession \ .builder \ .appName("Python Spark SQL basic example") \ .config("spark.some.config.option", "some-value") \ .getOrCreate() import pyspark.sql.functions as F
Load some data
df = spark.read.load("DEX03s - 2019-10-07.csv", format="csv", sep=",", inferSchema="true", header="true")
Find columns that are more than 90% null
threshold = df.count() * .90 null_counts = df.select([F.count(F.when(F.col(c).isNull(), c)).alias(c) for c in df.columns]).collect()[0].asDict() to_drop = [k for k, v in null_counts.items() if v >= threshold ]
Drop Null columns
clean = df.drop(*to_drop) display(clean)
Create a subset of records
subsetDF = cleanDF.limit(100).select("COMMENT_DESC") map = { 'zip': ['ZIP'], 'moved': ['MOVED'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS'] } print(subsetDF.count()) subsetDF.show()
Categorize records using a User Defined Fucntion (UDF)
from pyspark.sql.functions import count, col from pyspark.sql.functions import udf from pyspark.sql.types import StringType def getErrorType ( errorString ): if errorString is None: return 'empty' map = { 'moved': ['MOVED'], 'zip': ['ZIP'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS'] } for key,searchlist in map.items(): for searchterm in searchlist: print ("{} - {}".format(errorString, searchterm) ) if ( errorString.find(searchterm) >= 0 ): return key return 'unknown' myudf = udf(getErrorType, StringType()) subsetDF = ( cleanDF .select("COMMENT_DESC") .withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) ) ) print(subsetDF.count()) subsetDF.show() country_totals = ( subsetDF .select ( "ERROR_CLASSIFICATION") .groupby("ERROR_CLASSIFICATION") .agg(count("*").alias("count")) .sort(col("count").desc()) ) country_totals.show()
Better Custom UDF
from pyspark.sql.functions import count, col from pyspark.sql.functions import udf from pyspark.sql.types import StringType def getErrorType ( errorString ): if errorString is None: return 'empty' map = { 'moved': ['MOVED'], 'zip': ['ZIP'], 'apt': ['APT','FLAT'], 'box': ['P O BOX', 'PO BOX'], 'street': ['STREET','ADDRESS','HOUSE NBR', 'ADD', 'ADRESS', 'ST NUMR', 'WRG ADRS'], 'phone': ['CONTACT NUMBER', 'NEED NUMBER', 'TEL', 'WRONG NUM', 'WRONG NMBR', 'WRONG #', 'CONTACT NUMBER', 'LANDLINE', 'MOBIL', 'PHONE NO', 'CELL', 'PHONE','PH','MOBILE'], 'missing': ['PERSON', 'NO RESPONSE', 'REACHABLE', 'NO ANSWER'], 'missort': ['SORT'] } for key,searchlist in map.items(): for searchterm in searchlist: print ("{} - {}".format(errorString, searchterm) ) if ( errorString.find(searchterm) >= 0 ): return key return 'unknown' myudf = udf(getErrorType, StringType()) subsetDF = ( cleanDF .select("COMMENT_DESC") .withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) ) ) unknownDF = subsetDF.select ("*").filter("ERROR_CLASSIFICATION='unknown'") unknownDF.show(30) unknownDF.repartition(1).write.format('csv').mode('overwrite').options(header="true",sep=",").save(path="unknown.csv") error_totals = ( subsetDF .select ( "ERROR_CLASSIFICATION") .groupby("ERROR_CLASSIFICATION") .agg(count("*").alias("count")) .sort(col("count").desc()) ) error_totals.show()
Cool trick to display panda data frame
from IPython.display import display, HTML display(HTML(country_totals.toPandas().to_html()))
Plotting Bar Graph
If you want the count calculated automatically (default)
from plotnine import ggplot, geom_point, aes, stat_smooth, facet_wrap ggplot( country_totals.limit(10).toPandas() , aes(x='COUNTRY_CD' ) ) + geom_bar()
To specify a Y value explicitly, use stat='identity'
from plotnine import ggplot, geom_point, aes, stat_smooth, facet_wrap ggplot( country_totals.limit(10).toPandas() , aes(x='COUNTRY_CD',y='count' ) ) + geom_bar(stat='identity')
Creating Columns from Rows using Multiple Aggregates
scanLookupDf = ( scansDf .groupby('shp_trk_nbr') .pivot('excp_type_cd') .agg(count('excp_type_cd').alias('cnt'),F.first('evnt_crt_tmstp').alias('first'),F.last('evnt_crt_tmstp').alias('last')) )
Date Functions
Convert Time w/ Time Offset to Timestamp
from dateutil import parser, tz from pyspark.sql.types import StringType from pyspark.sql.functions import col, udf # Create UTC timezone utc_zone = tz.gettz('UTC') # Create UDF function that apply on the column # It takes the String, parse it to a timestamp, convert to UTC, then convert to String again func = udf(lambda x: parser.parse(x).astimezone(utc_zone).isoformat(), StringType()) myDf = ( scanDf .withColumn('event_timestamp', func(col("evnt_crt_tmstp")) ) .select("evnt_crt_tmstp", "event_timestamp") ) display ( myDf.limit(5).toPandas() )